Properties for Expanding Logarithms

Property 1: $\log _{3} 1=0$ - Zero-Exponent Rule $\log _{1} \sqrt{1}=0, \log _{2}(1)=0 \quad$ ass en b
Property 2: $\log _{\mathrm{a}} \mathrm{a}=1$

Property 3: $\log _{a}(x y)=\log _{a} x+\log _{a} y-$ Product Rule $\quad>\log \left(x_{*} y\right)=\log _{a}(x)+\log _{a}(y)$
Property 4: $\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y-$ Quotient Rule $\quad \checkmark \log _{a} x^{5}=5 \log _{a} x$,
Example 1: Use the properties of logarithms to expand $\log _{3}\left(x^{2} y^{7}\right) \cdot=\sqrt{\log _{3} x+\sqrt{\log _{3}} x}$

$$
\begin{aligned}
\log _{3}\left(x^{2} y^{7}\right) & =\log _{3} x^{2}+\log _{3} y^{7} & & \text { Use property } 3 \text { to rewrite the multiplication as addition. } \\
& =2 \log _{3} x+7 \log _{3} y & & \text { Use Property } 5 \text { to move the exponents out front. }
\end{aligned}
$$

Thus, $\log _{3}\left(x^{2} y^{7}\right)=2 \log _{3} x+7 \log _{3} y$.
Example 2: Use the' properties of logarithms to expand $\log _{8}\left(\frac{\sqrt{x}}{y^{3}}\right)=\log _{8} \sqrt{x}-\log _{8} y^{3}$

$$
\begin{aligned}
\log _{8}\left(\frac{\sqrt{x}}{y^{3}}\right) & =\log _{8}\left(\frac{x^{1 / 2}}{y^{3}}\right) \\
& =\log _{8} x^{1 / 2}-\log _{8} y^{3}- \\
& =\frac{1}{2} \log _{8} x-3 \log _{8} y
\end{aligned}
$$

Rewrite the radical using rational exponents (fractions).

Use property 4 to rewrite the division as subtraction.
Use Property 5 to move the exponents out front.

Thus, $\log _{8}\left(\frac{\sqrt{x}}{y^{3}}\right)=\frac{1}{2} \log _{8}-3 \log _{\mathrm{n}} \mathrm{y}$.
Example 3: Use the properties of logarithms to expand $\log _{4}\left(\frac{4 x}{y^{9}}\right)=\log _{u}\left(y_{\infty} x\right)-\log _{4} y^{9}$ $\log _{4}\left(\frac{4 \mathrm{x}}{\mathrm{y}^{9}}\right)=\log _{4} 4+\log _{4} \mathrm{x}-\log _{4} \mathrm{y}^{9} \quad \begin{aligned} & \text { Use properties } 3 \text { and } \\ & \text { and the division as subtraction. Note that } 4 \mathrm{x} \text { means } 4 \text { times } 4 \text { times } \mathrm{x} \\ & \text { and } \\ & \text { which is why Property } 3 \text { has been used to rewrite the } \\ & \text { logarithm using addition. }\end{aligned}$

$$
\begin{aligned}
& =\log _{4} 4+\log _{4} x-9 \log _{4} y \\
& =1+\log _{4} x-9 \log _{4} y
\end{aligned}
$$

Use Property 5 to move the exponents out front.
Use Property 2 to simplify the logarithm.

Example 4: Use the properties of logarithms to expand $\log \left(\frac{\sqrt[4]{x^{3}} y^{7}}{z^{4}}\right) . \therefore \sqrt[4]{x^{3}}=\left(x^{3}\right)^{\frac{1}{4}}=x^{\frac{3}{4}}$ $\log \left(\frac{\sqrt[4]{x^{3}} y^{7}}{z^{4}}\right)=\log \left(\frac{x^{3 / 3} y^{7}}{z^{8}}\right) \quad \log _{\text {Rewrite }}\left(\frac{x^{\frac{5}{4}} \cdot y^{7}}{7}\right)-\log z^{8} z^{8}$

> and the division as subtraction. $=\frac{3}{4} \log x \pm 7 \log y \overline{\mathbb{Q}^{3}} \log z$ Use Property 5 to move the exponents out front.

Thus, $\log \left(\frac{\sqrt[4]{x^{3}} y^{7}}{z^{8}}\right)=\frac{3}{4} \log +7 \log y-8 \log z$.
Example 5: Use the properties of logarithms to expand $\ln \left(\frac{x^{5}}{y^{2} z^{7}}\right)$. $\ln \frac{x^{5}}{y^{2} z^{7}}=\ln x^{5}-\ln \left(y^{2} z^{7}\right)$
$\left.\ln \left(\frac{x^{5}}{y^{2} z^{7}}\right)=\ln x^{5}-\ln y^{2}-\ln z^{7} \quad \begin{array}{l}\text { Use property } 4 \text { to rewrite the division as subtraction. Since } \\ \text { both the } y \text { and } z \text { terms are in the denominator of the fraction, }\end{array} \underset{\pi}{\pi} \ln z\right]$ they are each considered to be division and this makes each of them into subtraction when expanded.
$=5 \ln x-2 \ln y=7 \ln z \quad$ Use Property 5 to move the exponents out front.
Thus, $\ln \left(\frac{x^{3}}{y^{2} z^{7}}\right)=5 \ln x-2 \ln y-7 \ln z$.

Practice Problems

Now it is your turn to try a few practice problems on your own. Work on each of the problems below and then click on the link at the end to check your answers.

Problem 1: Use the properties of logarithms to expand $\log _{6}\left(\frac{\sqrt[5]{x^{3}}}{y^{9}}\right)$.
Problem 2: Use the properties of logarithms to expand $\log \left(\frac{10 \sqrt{x}}{y^{5}}\right)$.
Problem 3: Use the properties of logarithms to expand $\log _{8}\left(\frac{x^{14} y^{7}}{z^{15}}\right)$.
Problem 4: Use the properties of logarithms to expand $\ln \left(7 x^{3} y^{8}\right)$.
Problem 5: Use the properties of logarithms to expand $\log _{2}\left(\frac{1}{x^{5} y^{3}}\right)$.

Neutral logarithm

Natural logarithm is the logarithm to the base e.
Notation: $\quad \log _{e} x \rightarrow \ln x$

$$
\begin{aligned}
\int_{1}^{x} \frac{1}{t} d t & =\ln x-\ln 1 \\
& =\ln x-0
\end{aligned}
$$

DEFINITION The Natural Logarithm Function

$$
\ln x=\int_{1}^{y} \frac{1}{t} d t, \quad x>0
$$

TABLE 7.1 Typical 2-place values of $\ln x$

\boldsymbol{x}	$\ln x$	
0	undefined	
- 0.05	M0.05 $=-3.00$	
0.5	mo.5 $=-0.69$	ves
1	$\ln (1)=0$	~0,
2	0.69	nel
3	1.10	H.W
4	1.39	
10	2.30	

DEFINITION The Number e

The number e is that number in the domain of the natural logarithm satisfying

$$
\ln (e)=1
$$

$$
\begin{equation*}
\frac{d}{d x} \ln \underline{u}=\frac{1}{u} \frac{d u}{d x}, \quad \underline{u}>0 \tag{1}
\end{equation*}
$$

EXAMPLE 1 Derivatives of Natural Logarithms
(a) $\frac{d}{d x} \ln 2 x=\frac{1}{2 x} \frac{d}{d x}(2 x)=\frac{1}{d x}(2)=\frac{1}{x} \rightarrow \frac{d}{d x} \ln (2 x)=\frac{1}{2 x} \frac{d}{d x}(2 x)$
(b) Equation (1) with $u=\underline{x^{2}+3}$ gives

You Try It

$$
\frac{d}{d x} \ln \left(\underline{x^{2}+3}\right)=\frac{1}{x^{2}+3} \cdot \frac{d}{d x}\left(x^{2}+3\right)=\frac{1}{x^{2}+3} \cdot 2 x=\frac{2 x}{x^{2}+3}
$$

$$
\frac{d}{d x} \ln \left(x^{2}+3\right)=\frac{1}{\left(x^{2}+3\right)} \frac{d}{d x}\left(x^{2}+1\right)=\frac{1}{x^{2}+3}(2 x)
$$

$$
\frac{d}{d x} \ln (a x)=\frac{1}{a x} \cdot \frac{d}{d x}(a x)=\frac{1}{=}(a)=\frac{1}{x} \cdot-\frac{d}{d x} a x=a \frac{d}{d x} x=a .1
$$

THEOREM 2 Properties of Logarithms

For any numbers $a>0$ and $x>0$, the natural logarithm satisfies the following rules:

1. Product Rule:

2. Quotient Rule:
3. Reciprocal Rule:

$$
\ln \frac{1}{x}=-\ln x=\left.\ln \right|_{\text {Rule } 2 \text { with } a=1} \ln x=0-\ln x=-\ln x
$$

4. Power Rule:
$\sqrt{\ln x}=r \ln x$ r rational

We illustrate how these rules apply.
EXAMPLE 2 Interpreting the Properties of Logarithms
(a) $\ln \underline{6}=\ln (2 \cdot \underline{3})=\ln 2+\ln 3 \quad$ Product
(b) $\ln 4-\ln 5=\ln \frac{4}{5}=\ln 0.8 \quad$ Quotient
(c) $\ln \frac{1}{8}=-\ln 8 \quad 8=2$ Reciprocal $\quad 2 \times 2 \times i=2$

$$
=-\overparen{\ln 2^{3}}=-3 \ln 2
$$

Power

EXAMPLE 3 Applying the Properties to Function Formulas
(a) $\ln 4+\ln \sin x=\ln (4 \underline{\sin x})$

Product
Quotient
[Example 5.1] Find the derivative of the following functions.

$$
\begin{aligned}
& \text { 1- } y=\ln (2 x), \\
& y^{\prime}=\frac{1}{2 x} \cdot(2 x)=\frac{2}{2 x}=\frac{1}{x}
\end{aligned}
$$

$$
\frac{d}{d x} \ln 3 x=\frac{1}{3 x} \frac{d}{d x} 3 x=\frac{3}{3 x}=\frac{1}{x}
$$

2- $y=\underline{x} \ln 3 x$

$$
1=(x)^{\prime}
$$

$$
-(\ln x)^{2}=\ln x^{2}=2 \ln x
$$

$$
\begin{aligned}
& \text { Find the derisive of the following functions } \\
& \\
& \\
& \text { (2) } \frac{d}{d x}(x \ln x)=(x)^{\prime} \cdot \ln x+x \cdot(\ln x)^{\prime}=\ln x+x \cdot \frac{1}{x}=\ln x+1 \quad=\frac{d}{d x}(\ln x)^{2}=2(\ln (x))^{2-1} \frac{d}{d x} \ln X \\
&
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \log _{10} x=\frac{\ln x}{\ln 10} \rightarrow \log _{a} X=\frac{\ln X}{\ln \alpha} \\
& \frac{d}{d x} \log _{10} x=\frac{d}{d x} \frac{\ln x}{\ln 10}=\frac{1}{\ln 10} \frac{d}{d x} \ln x=\frac{1}{(\ln 10) x} \\
& \text { arb مَ } \\
& \log _{a} \\
& \log _{3} x=\frac{\ln x}{\operatorname{los} 3} \quad \frac{d}{d x} \log _{10} x=\frac{d}{d x} \frac{\ln x}{\ln 10} \cos
\end{aligned}
$$

